Quartus II Introduction for VHDL Users

This tutorial presents an introduction to the Quartus[®] II software. It gives a general overview of a typical CAD flow for designing circuits that are implemented by using FPGA devices, and shows how this flow is realized in the Quartus II software. The design process is illustrated by giving step-by-step instructions for using the Quartus II software to implement a simple circuit in an Altera[®] FPGA device.

The Quartus II system includes full support for all of the popular methods of entering a description of the desired circuit into a CAD system. This tutorial makes use of the VHDL design entry method, in which the user specifies the desired circuit in the VHDL hardware description language. Another version of this tutorial is available that uses Verilog hardware description language.

The screen captures in the tutorial were obtained using the Quartus II version 5.1; if other versions of the software are used, some of the images may be slightly different.

Contents: Typical CAD flow Getting Started Starting a New Project Design Entry Using VHDL Code Compiling the VHDL Code Using the RTL Viewer Specifying Timing Contraints Quartus II Windows Computer Aided Design (CAD) software makes it easy to implement a desired logic circuit by using a programmable logic device, such as a field-programmable gate array (FPGA) chip. A typical FPGA CAD flow is illustrated in Figure 1.

Figure 1: Typical CAD flow.

It involves the following basic steps:

- **Design Entry** the desired circuit is specified either by using a hardware description language, such as Verilog or VHDL, or by means of a schematic diagram
- **Synthesis** the CAD Synthesis tool synthesizes the circuit into a netlist that gives the logic elements (LEs) needed to realize the circuit and the connections between the LEs
- Functional Simulation the synthesized circuit is tested to verify its functional correctness; the simulation does not take into account any timing issues
- **Fitting** the CAD Fitter tool determines the placement of the LEs defined in the netlist into the LEs in an actual FPGA chip; it also chooses routing wires in the chip to make the required connections between specific LEs
- **Timing Analysis** propagation delays along the various paths in the fitted circuit are analyzed to provide an indication of the expected performance of the circuit

- Timing Simulation the fitted circuit is tested to verify both its functional correctness and timing
- **Programming and Configuration** the designed circuit is implemented in a physical FPGA chip by programming the configuration switches that configure the LEs and establish the required wiring connections

This tutorial introduces the basic features of the Quartus II software. It shows how the software can be used to design and implement a circuit specified using the VHDL hardware description language. It makes use of the graphical user interface to invoke the Quartus II commands. Doing this tutorial, the reader will learn about:

- · Creating a project
- Synthesizing a circuit from VHDL code using the Quartus II Integrated Synthesis tool
- Fitting a synthesized circuit into an Altera FPGA
- Examining the report on the results of fitting and timing analysis
- Examining the synthesized circuit in the form of a schematic diagram generated by the RTL Viewer tool
- Making simple timing assignments in the Quartus II software

1 Getting Started

Each logic circuit, or subcircuit, being designed with the Quartus II software is called a *project*. The software works on one project at a time and keeps all information for that project in a single directory (folder) in the file system. To begin a new logic circuit design, the first step is to create a directory to hold its files. As part of the installation of the Quartus II software, a few sample projects are placed into a directory called *qdesigns*<*version number*>*vhdl_verilog_tutorial*. To hold the design files for this tutorial, we will use a directory *quartus_tutorial*. The running example for this tutorial is a simple adder/subtractor circuit, which is defined in the VHDL hardware description language.

Start the Quartus II software. You should see a display similar to the one in Figure 2. This display consists of several windows that provide access to all the features of the Quartus II software, which the user selects with the computer mouse. Most of the commands provided by the Quartus II software can be accessed by using a set of menus that are located below the title bar. For example, in Figure 2 clicking the left mouse button on the menu named File opens the menu shown in Figure 3. Clicking the left mouse button on the entry Exit exits from the Quartus II software. In general, whenever the mouse is used to select something, the *left* button is used. Hence we will not normally specify which button to press. In the few cases when it is necessary to use the *right* mouse button, it will be specified explicitly. For some commands it is necessary to access two or more menus in sequence. We use the convention Menu1 > Menu2 > Item to indicate that to select the desired command the user should first click the left mouse button on Menu1, then within this menu click on Menu2, and then within Menu2 click on Item. For example, File > Exit uses the mouse to exit from the system. Many commands can be invoked by clicking on an icon displayed in one of the toolbars. To see the list of available toolbars, select Tools > Customize > Toolbars. Once a toolbar is opened, it can be moved using the mouse, and icons can be dragged from one toolbar to another. To see the command associated with an icon, position the mouse over the icon and a tooltip will appear that displays the command name.

It is possible to modify the appearance of the display in Figure 2 in many ways. Section 7 shows how to move, resize, close, and open windows within the main Quartus II display.

🐇 Quartus II	
File Edit View Project Assignments Processing Tools Window Help	
	2
Project Navigator	
Status Module Progress % Time () Progress % Time	
System (Processing) Extra Info) Info) Warning) Critical Warning) Error) Suppressed /	ite

Figure 2: The main Quartus II display.

File	Edit	View	Project	Assignments
0 1	jew			Ctrl+N
🖻 🖸	pen			Ctrl+O
	lose			Ctrl+F4
🛣 N	lew Pro	oject <u>W</u>	izard	
🕵 C	pen P <u>r</u>	oject		Ctrl+J
c	onvert	MAX+F	P <u>L</u> US II Pr	oject
s	ave Pr	ojec <u>t</u>		
C	los <u>e</u> Pr	oject		
	ave			Ctrl+S
s	iave <u>A</u> s			
s	ave Cu	irrent R	leport Sea	tion As
E	ile Proj	perties.		
с	reate $_{l}$	Updat	e	+
E	xport <u>.</u> ,			
C C	onvert	Progra	i <u>m</u> ming Fi	les
D P	age Se	etyp		
🖻 P	rint Pre	e <u>v</u> iew		
₿ P	rint			Ctrl+P
R	ecent I	- <u>i</u> les		•
R	.ecent I	Project	6	•
	xit			Alt+F4

Figure 3: An example of the File menu.

1.1 Quartus II Online Help

The Quartus II software provides comprehensive online documentation that answers many of the questions that may arise when using the software. The documentation is accessed from the menu in the Help window. To get some idea of the extent of documentation provided, it is worthwhile for the reader to browse through the Help menu. For instance, selecting Help > How to Use Help gives an indication of what type of help is provided.

The user can quickly search through the Help topics by selecting Help > Search, which opens a dialog box into which key words can be entered. Another method, context-sensitive help, is provided for quickly finding documentation for specific topics. While using most applications, pressing the F1 function key on the keyboard opens a Help display that shows the commands available for the application.

2 Starting a New Project

To start working on a new design we first have to define a new *design project*. The Quartus II software makes the designer's task easy by providing support in the form of a *wizard*.

1. Select File > New Project Wizard to reach a window that indicates the capability of this wizard. Press Next to get the window shown in Figure 4.

J:\quartus_tutorial		
(hat is the name of this project?)	
addersubtractor		
Vhat is the name of the top-leve Ind must exactly match the entity	I design entity for this project? This name y name in the design file.	is case sensitive
addersubtractor		
Use Existing Project Settings		

2. Set the working directory to be *quartus_tutorial*; of course, you can use a directory name of your choice. The project must have a name, which is usually the same as the top-level design entity that will be included in the project. Choose *addersubtractor* as the name for both the project and the top-level entity, as shown in Figure 4. Press Next. Since we have not yet created the directory *quartus_tutorial*, the Quartus II software displays the pop-up box in Figure 5 asking if it should create the desired directory. Click Yes, which leads to the window in Figure 6.

Figure 5: The Quartus II software can create a new directory for the project.

v Project Wizard: Add Files [page 2 of !	j]	
Select the design files you want to include in the pro n the project directory to the project. Note: you can ater.	iject. Click Add All to a always add design file	add all design files es to the project
File name:		Add
File name	Туре	Add All
		Remove
		Properties
		Up
		Down
Specify the path names of any non-default libraries.	User Librarie	s
F		
< Back	Next> Fi	nish Cancel

Figure 6: The wizard can include user-specified design files.

3. This window makes it easy to specify which existing files (if any) should be included in the project. Assuming that we do not have any existing files, click **Next**, which leads to the window in Figure 7.

Eitu				
Family: Stratix		-		
Target device				
C Auto device selected by the selected by t	he Fitter from the !	Available devices' li	st	
Specific device selected i	n 'Available devic	es' list		
Available devices:		- Filters		
EP1510867206 EP1510F484C5	^	Package:	Any	-
EP1S10F672C6		. st. dgo.		
EP1S10F780C5 EP1S10F780C5ES		Pin count:	Any	•
EP1S20B672C6		Speed grade:	Fastest	-
EP1S20F484C5 EP1S20F672C6		Core voltage:	1.5V	
EP1S20F780C5		E Chau Artu	manad Davisso	
EP1S25B672C6		Show Adv.	anced Devices	
EP1S25F780C5		- Companion de	vice	
EP1S25F1020C5		HardCopy II:		~
EP1525F672C6_HARDCUPY_	FPGA_PRUIU			
EP1S30F780C5		Limit DSP device res	& HAM to Hard ources	
EP1S30F780C5 EP1S30F1020C5	~	device res	& HAM to Hard ources	

Figure 7: Choose the device family and a specific device.

4. In this window, we can specify the type of device in which the designed circuit will be implemented. Choose the Stratix[®] menu item as the target device family. We can let the Quartus II software select a specific device in the family, or we can choose the device explicitly. We will take the latter approach. From the list of available devices, choose the device called EP1S10F484C5. Press Next, which opens the window in Figure 8.

New Project Wizard: EDA T	ool Settings [page 4 of 5]	X
Specify the other EDA tools in	addition to the Quartus II software used with the project.	
EDA design entry / synthesis tool:	Not available	
EDA simulation tool:	Not available	
🖵 EDA timing analysis tool:	Not available	
	< Back Next > Finish Cance	

Figure 8: Other EDA tools can be specified.

5. In this window, one can specify any third-party tools that should be used. A commonly used term for CAD software for electronic circuits is *EDA tools*, where the acronym stands for electronic design automation. This term is used in the Quartus II messages that refer to third-party tools, which are the tools developed and

marketed by companies other than Altera; other tutorials show how such tools may be used. Since we will rely solely on the Quartus II tools, we will not choose any other tools. Press Next. Now, a summary of the chosen settings appears in the screen shown in Figure 9. Press Finish, which returns to the main Quartus II window, but with *addersubtractor* specified as the new project, in the display title bar, as indicated in Figure 10.

New Project Wizard: Summa	ary [page 5 of 5] 🛛 🗙
When you click Finish, the project	ct will be created with the following settings:
Project directory: D:/quartus_tutorial/ Project name: Top-level design entity: Number of files added:	addersubtractor addersubtractor 0
Number of user libraries added: Device assignments:	0
Family name: Device: EDA tools:	Stratix EP1S10F484C5
Design entry/synthesis: Simulation:	<none> <none></none></none>
Timing analysis:	<none></none>
	< Back Next > Finish Cancel

Figure 10: The Quartus II display for the created project.

3 Design Entry Using VHDL Code

As a design example, we will use the adder/subtractor circuit shown in Figure 11. The circuit can add, subtract, and accumulate *n*-bit numbers using the 2's complement number representation. The two primary inputs are numbers $A = a_{n-1}a_{n-2}\cdots a_0$ and $B = b_{n-1}b_{n-2}\cdots b_0$, and the primary output is $Z = z_{n-1}z_{n-2}\cdots z_0$. Another input is the AddSub control signal which causes Z = A + B to be performed when AddSub = 0 and Z = A - B when AddSub = 1. A second control input, Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation $Z = A \pm B$ is performed, but if Sel = 1, then B is added to or subtracted from the current value of Z. If the addition or subtraction operations result in arithmetic overflow, an output signal, Overflow, is asserted.

To make it easier to deal with asynchronous input signals, we will load them into flip-flops on a positive edge of the clock. Thus, inputs A and B will be loaded into registers Areg and Breg, while Sel and AddSub will be loaded into flip-flops SelR and AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.

Figure 11: The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figure 12. For our example, we will use a 16-bit circuit as specified by n = 16.

```
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
- Top-level entity
ENTITY addersubtractor IS
    GENERIC (n: INTEGER := 16);
    PORT (A, B
                                   : IN
                                              STD_LOGIC_VECTOR(n-1 DOWNTO 0);
           Clock, Reset, Sel, AddSub : IN
                                              STD_LOGIC;
                                   : BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0);
           Ζ
                                   : OUT
           Overflow
                                              STD_LOGIC);
END addersubtractor;
ARCHITECTURE Behavior OF addersubtractor IS
    SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VECTOR(n-1 DOWNTO 0);
    SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC ;
    COMPONENT mux2to1
        GENERIC (k : INTEGER := 8);
        PORT (V, W : IN
                           STD_LOGIC_VECTOR(k-1 DOWNTO 0);
                           STD_LOGIC;
               Sel
                   : IN
               F
                    : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0));
    END COMPONENT ;
    COMPONENT adderk
        GENERIC (k : INTEGER := 8);
        PORT (carryin : IN
                              STD_LOGIC;
               X, Y
                       : IN
                              STD_LOGIC_VECTOR(k-1 DOWNTO 0);
                       : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0);
               S
               carryout : OUT STD_LOGIC);
    END COMPONENT ;
BEGIN
    PROCESS (Reset, Clock)
    BEGIN
        IF Reset = '1' THEN
            Areg \langle = (OTHERS = \rangle '0'); Breg \langle = (OTHERS = \rangle '0');
            Zreg \le (OTHERS => '0'); SelR \le '0'; AddSubR \le '0'; Overflow \le '0';
        ELSIF Clock'EVENT AND Clock = '1' THEN
            Areg \langle = A; Breg \rangle \langle = B; Zreg \rangle \langle = M;
            SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;
        END IF:
    END PROCESS ;
    nbit_adder: adderk
        GENERIC MAP ( k => n )
        PORT MAP ( AddSubR, G, H, M, carryout );
    multiplexer: mux2to1
        GENERIC MAP (k => n)
        PORT MAP ( Areg, Z, SelR, G );
    AddSubR_n \le (OTHERS \Longrightarrow AddSubR);
    H \leq Breg XOR AddSubR_n;
    over_flow \leq carryout XOR G(n-1) XOR H(n-1) XOR M(n-1);
    Z \leq Zreg;
END Behavior:
 \dots continued in Part b
```



```
- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
ENTITY mux2to1 IS
GENERIC ( k : INTEGER := 8 );
    PORT ( V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0);
           Select : IN STD_LOGIC ;
                : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) );
           F
END mux2to1;
ARCHITECTURE Behavior OF mux2to1 IS
BEGIN
    PROCESS (V, W, Select)
    BEGIN
       IF Select = '0' THEN
           F \leq V:
       ELSE
           F \leq W;
       END IF;
    END PROCESS :
END Behavior :
- k-bit adder
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_signed.all;
ENTITY adderk IS
    GENERIC (k : INTEGER := 8);
    PORT ( carryin : IN STD_LOGIC ;
           X, Y
                 : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0);
           S
                  : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0);
           carryout : OUT STD_LOGIC );
END adderk :
ARCHITECTURE Behavior OF adderk IS
    SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0);
BEGIN
    Sum \le ('0' \& X) + ('0' \& Y) + carryin;
    S \le Sum(k-1 DOWNTO 0);
    carryout <= Sum(k);
END Behavior;
```

Figure 12: VHDL code for the circuit in Figure 11 (Part *b*).

Note that the top VHDL entity is called *addersubtractor* to match the name given in Figure 4, which was specified when the project was created. This code can be typed into a file by using any text editor that stores ASCII files, or by using the Quartus II text editing facilities. While the file can be given any name, it is a common designers' practice to use the same name as the name of the top-level VHDL entity. The file name must include the extension *vhd*, which indicates a VHDL file. So, we will use the name *addersubtractor.vhd*. For convenience, we provide the required file in the directory *qdesigns*<*version number*>*\vhdLverilog_tutorial*. Copy this file into the project

directory quartus_tutorial.

3.1 Using the Quartus II Text Editor

This section shows how to use the Quartus II Text Editor. You can skip this section if you prefer to use some other text editor to create the *addersubtractor.vhd* file, or if you have chosen to copy the file from the *qdesigns*<*version number*>*vhdl_verilog_tutorial* directory.

1. Select File > New to get the window in Figure 13, choose VHDL File, and click OK. This opens the Text Editor window.

Ne	sw	×
	Device Design Files Software Files Other Files AHDL File Block Diagram/Schematic File EDIF File SOPC Builder System Verilog HDL File VHDL File	
	OK Cancel	

Figure 13: Choose to prepare a VHDL file.

2. The first step is to specify a name for the file that will be created. Select File > Save As to open the pop-up box depicted in Figure 14. In the box labeled Save as type choose VHDL File. In the box labeled File name type *addersubtractor*. Put a checkmark in the box Add file to current project. Click Save, which puts the file into the directory *quartus_tutorial* and leads to the Text Editor window shown in Figure 15.

Save As		×
Save in: 隘	quartus_tutorial 💽 🔶 🛍 🔻	
🛅 db		
File name:	addersubtractor.vhd Save	
Save as type:	VHDL File (*.vhd;*.vhdl) Cancel	
	Add file to current project	_

Figure 14: Name the file.

Figure 15: Text Editor window.

3. Maximize the Text Editor window and enter the VHDL code in Figure 12 into it. Save the file by typing File > Save, or by typing the shortcut Ctrl-s.

Most of the commands available in the Text Editor are self-explanatory. Text is entered at the *insertion point*, which is indicated by a thin vertical line. The insertion point can be moved either by using the keyboard arrow keys or by using the mouse. Two features of the Text Editor are especially convenient for typing VHDL code. First, the editor can display different types of VHDL statements in different colors, which is the default choice. Second, the editor can automatically indent the text on a new line so that it matches the previous line. Such options can be controlled by the settings in Tools > Options > Text Editor.

3.1.1 Using VHDL Templates

The syntax of VHDL code is sometimes difficult for a designer to remember. To help with this issue, the Text Editor provides a collection of *VHDL templates*. The templates provide examples of various types of VHDL statements, such as an **entity** declaration, a **process** statement, and assignment statements. It is worthwhile to browse through the templates by selecting Edit > Insert Template > VHDL to become familiar with this resource.

3.2 Adding Design Files to a Project

As we indicated when discussing Figure 6, you can tell the Quartus II software which design files it should use as part of the current project. To see the list of files already included in the *addersubtractor* project, select Assignments > Settings, which leads to the window in Figure 16. As indicated on the left side of the figure, click on the item Files. An alternative way of making this selection is to choose Project > Add/Remove Files in Project.

If you used the Quartus II Text Editor to create the file and checked the box labeled Add file to current project, as described in Section 3.1, then the *addersubtractor.vhd* file is already a part of the project and will be listed in the window in Figure 16. Otherwise, the file must be added to the project.

Category: General User Libraries (Current Project) Device Timing Requirements & Options EDA Tool Settings Compilation Process Settings Analysis & Synthesis Settings Filter Settings Design Assistant Signal Tap II Logic Analyzer Logic Analyzer Interface SignalProbe Settings Software Build Settings HardCopy Settings
General Files User Libraries (Current Project) Device Timing Requirements & Options Select the design files you want to include in the project. Click Add All to add all design files in the project directory to the project. Compilation Process Settings Select the design files you want to include in the project. Click Add All to add all design files in the project directory to the project. File name: Add Add File name: Assembler Timing Analyzer Design Assistant SignalProbe Settings SignalProbe Settings Simulator Settings PowerPlay Power Analyzer Settings Down Properties Properties
DK Cancel

Figure 16: Settings window.

- 1. If not already done, place a copy of the file *addersubtractor.vhd* into the directory *quartus_tutorial*, by getting it from the directory *qdesigns*<*version number*>*vhdl_verilog_tutorial* or by using a file that you created using some other text editor.
- 2. To add this file to the project, click on the File name: ... button in Figure 16 to get the pop-up window in Figure 17.

Select File	X
Look in: 🧰 quartus_tutorial 💽 🔶 🖻	r 🖬 🕶
e db ddersubtractor.vhd	
File name: addersubtractor.vhd	Open
Files of type: Design Files (*.tdf;*.vhd;*.vhd;*.vhd;*.v,*.vlg;*.vh;*.vh;*.vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*:vhd;*	Cancel

Figure 17: Select the file.

3. Select the *addersubtractor.vhd* file and click Open. The selected file is now indicated in the Files window of Figure 16. Click OK to include the *addersubtractor.vhd* file in the project.

We should mention that in many cases the Quartus II software is able to automatically find the right files to use for each entity referenced in VHDL code, even if the file has not been explicitly added to the project. However, for complex projects that involve many files it is a good design practice to specifically add the needed files to the project, as described above.

4 Compiling the VHDL Code

The VHDL code is processed by several Quartus II tools that analyze the code and generate an implementation of it for the target chip. These tools are controlled by the application program called the *Compiler*.

1. Run the Compiler by selecting Processing > Start Compilation, or by clicking the toolbar icon . As the compilation moves through various stages, its progress is reported in the window on the left side. Successful (or unsuccessful) compilation is indicated in a pop-up box. Acknowledge it by clicking OK, which leads to the Quartus II display in Figure 18, in which we have expanded the Entity hierarchy in the top left corner to show all entities in the *addersubtractor* design. In the message window, at the bottom of Figure 18, various messages are displayed. In case of errors, there will be appropriate messages given.

Figure 18: Display after a successful compilation.

2. When the compilation is finished, a compilation report is produced. A window showing this report, displayed in Figure 19, is opened automatically. The window can be resized, maximized, or closed in the normal way, and it can be opened at any time either by selecting Processing > Compilation Report or by clicking on the icon . The report includes a number of sections listed on the left side of its window. Figure 19 displays the Compiler Flow Summary section, which indicates that only a miniscule amount of chip resources are needed to implement this tiny circuit on the selected FPGA chip.

Compilation Report - Flow Summary				
Compilation Report - Flow Sum Compilation Report E Legal Notice Flow Summary Flow Elapsed Time Flow Elapsed Time Flow Log	Flow Summary Flow Status Successful - Tue Sep 06 16:15:30 2005 Quartus II Version 5.1 Internal Build 148 09/01/2005 TO Full Version Revision Name addersubtractor Top-level Entity Name addersubtractor			
Analysis & Synthesis Analysis & Settings Analysis & Settings Summary	Family Stratix Device EP1S10F484C5 Timing Models Final Met timing requirements Yes Total logic elements 53 / 10,570 (< 1 %) Total logic elements 53 / 2020 (1 %)			
- 올라 Clock Setup: 'Clock' - 올라 tsu - 올라 tco - 올라 th - 올해 INI Usage - 올 () Messages	Total pins 537 336 (16 %) Total virtual pins 0 Total memory bits 0 / 920,448 (0 %) DSP block 9-bit elements 0 / 48 (0 %) Total PLLs 0 / 6 (0 %) Total DLLs 0 / 2 (0 %)			

Figure 19: Compilation report.

The Compilation Report provides a lot of information that may be of interest to the designer. It indicates the speed of the implemented circuit. A good measure of the speed is the maximum frequency at which the circuit can be clocked, referred to as *fmax*. This measure depends on the longest delay along any path between two registers clocked by the same clock. The Quartus II software performs a timing analysis to determine the expected performance of the circuit. It evaluates several parameters, which are listed in the Timing Analyzer section of the Compilation Report.

3. Click on the small + symbol next to Timing Analyzer to expand this section of the report, as shown in Figure 19. Clicking on Timing Analyzer item Summary displays the table in Figure 20. The last entry in the table shows that the maximum frequency for our circuit implemented on the specified chip is 217.63 MHz. You may get a different value of *fmax*, dependent on the specific version of the Quartus II software installed on your computer.

Compilation Report - Timing A	naly	zer S							
🞒 🔄 Compilation Report	Ti	ming Analyzer Summary							
- 👍 🖹 Legal Notice		Туре	Slack	Required Time	Actual Time	From	То	From Clock	To Clock
- 🗃 🎹 Flow Settings	1	Worst-case tsu	N/A	None	2.831 ns	Sel	SelR		Clock
- 🗃 🎹 Flow Elapsed Time	2	Worst-case tco	N/A	None	7.319 ns	Zreg[13]	Z[13]	Clock	
Flow Log	3	Worst-case th	N/A	None	-1.662 ns	A[4]	Areg[4]		Clock
H	4	Clock Setup: 'Clock'	N/A	None	217.63 MHz (period = 4.595 ns)	Zreg[8]	Overflow~reg0	Clock	Clock
	5	Total number of failed paths							
Timing Analyzer Timing Analyzer Summary Summary Get Settings Summary Got Settings Got Setting									
	<								>

Figure 20: Summary of timing analysis.

4. To see the paths in the circuit that limit the *fmax*, click on the Timing Analyzer item Clock Setup: 'Clock' in Figure 20 to obtain the display in Figure 21. This table shows that the critical path begins at bit 8 of register Zreg and ends at the flip-flop Overflow. The table in Figure 20 also shows the measurements of other timing parameters. While *fmax* is a function of the longest propagation delay between two registers in the circuit, it does not indicate the delays with which output signals appear at the pins of the chip. The time elapsed from an active edge of the clock signal at the clock source until a corresponding output signal

Stack Actual fmax (period) From To From Clock To Clock Clock	Cloc	k Setup: '	Clock'					
1 N/A 217.63 MHz (period = 4.595 ns) Zreg(8) Overflow*reg0 Clock Clock 2 N/A 218.67 MHz (period = 4.573 ns) AddSubR Overflow*reg0 Clock		Slack	Actual fmax (period)	From	То	From Clock	To Clock	^
2 N/A 218.67 MHz (period = 4.573 ns) AddSubR Overflow*reg0 Clock Clock 3 N/A 219.88 MHz (period = 4.548 ns) Zreg[10] Overflow*reg0 Clock Clock 4 N/A 223.41 MHz (period = 4.476 ns) SelR Overflow*reg0 Clock Clock 5 N/A 228.68 MHz (period = 4.373 ns) Zreg[17] Overflow*reg0 Clock Clock 6 N/A 228.68 MHz (period = 4.373 ns) Zreg[7] Overflow*reg0 Clock Clock 7 N/A 225.69 MHz (period = 3.081 ns) Zreg[7] Overflow*reg0 Clock Clock 8 N/A 258.80 MHz (period = 3.864 ns) Zreg[18] Zreg[19] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns) Zreg[13] Clock Clock 10 N/A 258.80 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock <td>1</td> <td>N/A</td> <td>217.63 MHz (period = 4.595 ns)</td> <td>Zreg[8]</td> <td>Overflow~reg0</td> <td>Clock</td> <td>Clock</td> <td></td>	1	N/A	217.63 MHz (period = 4.595 ns)	Zreg[8]	Overflow~reg0	Clock	Clock	
3 N/A 213.88 MHz (period = 4.548 ns) Zreg[10] Overflow*reg0 Clock Clock 4 N/A 223.41 MHz (period = 4.476 ns) SelR Overflow*reg0 Clock Clock 5 N/A 228.68 MHz (period = 4.476 ns) SelR Overflow*reg0 Clock Clock 6 N/A 228.68 MHz (period = 4.373 ns) Zreg[7] Overflow*reg0 Clock Clock 7 N/A 245.69 MHz (period = 4.088 ns) Zreg[7] Overflow*reg0 Clock Clock 8 N/A 255.69 MHz (period = 3.911 ns) Zreg[15] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns) Zreg[16] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.842 ns) AdSubR Zreg[15] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AdSubR Zreg[14] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock <tr< td=""><td>2</td><td>N/A</td><td>218.67 MHz (period = 4.573 ns)</td><td>AddSubR</td><td>Overflow~reg0</td><td>Clock</td><td>Clock</td><td></td></tr<>	2	N/A	218.67 MHz (period = 4.573 ns)	AddSubR	Overflow~reg0	Clock	Clock	
4 N/A 223.41 MHz (period = 4.476 ns) SelR Overflow*reg0 Clock Clock 5 N/A 228.68 MHz (period = 4.373 ns) Zreg[9] 0verflow*reg0 Clock Clock 6 N/A 244.62 MHz (period = 4.088 ns) Zreg[7] 0verflow*reg0 Clock Clock 7 N/A 255.69 MHz (period = 3.911 ns) Zreg[5] Overflow*reg0 Clock Clock 8 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[15] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[15] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 260.28 MHz (period = 3.817 ns) Zreg[10] Zreg[14] Clock <td>3</td> <td>N/A</td> <td>219.88 MHz (period = 4.548 ns)</td> <td>Zreg[10]</td> <td>Overflow~reg0</td> <td>Clock</td> <td>Clock</td> <td>Ī</td>	3	N/A	219.88 MHz (period = 4.548 ns)	Zreg[10]	Overflow~reg0	Clock	Clock	Ī
5 N/A 228.68 MHz [period = 4.373 ns] Zreg[3] Overflow*reg0 Clock Clock 6 N/A 244.62 MHz [period = 4.088 ns] Zreg[7] Overflow*reg0 Clock Clock 7 N/A 255.63 MHz [period = 3.911 ns] Zreg[5] Overflow*reg0 Clock Clock 8 N/A 255.63 MHz [period = 3.864 ns] Zreg[3] Zreg[15] Clock Clock 9 N/A 258.80 MHz [period = 3.864 ns] Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz [period = 3.864 ns] Zreg[8] Zreg[13] Clock Clock 11 N/A 260.28 MHz [period = 3.864 ns] Zreg[16] Clock Clock Clock 12 N/A 260.28 MHz [period = 3.842 ns] AddSubR Zreg[13] Clock Clock 13 N/A 260.28 MHz [period = 3.842 ns] AddSubR Zreg[14] Clock Clock 14 N/A 260.28 MHz [period = 3.817 ns] Zreg[10] Zlock Clock Clock 15 N/A 261.99 MHz [period = 3.817 ns] Zreg[10] Zlocf141	4	N/A	223.41 MHz (period = 4.476 ns)	SelR	Overflow~reg0	Clock	Clock	Ī
6 N/A 244.62 MHz (period = 4.088 ns.) Zreg[7] Overflow ~reg0 Clock Clock 7 N/A 255.69 MHz (period = 3.911 ns.) Zreg[5] Overflow ~reg0 Clock Clock 8 N/A 258.80 MHz (period = 3.864 ns.) Zreg[8] Zreg[15] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns.) Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns.) Zreg[8] Zreg[13] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns.) Zreg[8] Zreg[13] Clock Clock 11 N/A 258.80 MHz (period = 3.842 ns.) AddSubR Zreg[15] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns.) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns.) AddSubR Zreg[13] Clock Clock 14 N/A 260.28 MHz (period = 3.817 ns.) Zreg[10] Zreg[13] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns.) Zreg[10] Zreg[14] <td< td=""><td>5</td><td>N/A</td><td>228.68 MHz (period = 4.373 ns)</td><td>Zreg[9]</td><td>Overflow~reg0</td><td>Clock</td><td>Clock</td><td>Ĩ</td></td<>	5	N/A	228.68 MHz (period = 4.373 ns)	Zreg[9]	Overflow~reg0	Clock	Clock	Ĩ
7 N/A 255.69 MHz (period = 3.911 ns) Zreg[5] Overflow rreg0 Clock Clock 8 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[15] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[13] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[13] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[15] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[14] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Clock Clock Clock	6	N/A	244.62 MHz (period = 4.088 ns)	Zreg[7]	Overflow~reg0	Clock	Clock	Ĩ
8 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[15] Clock Clock 9 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[13] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[14] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Clock Clock Mz	7	N/A	255.69 MHz (period = 3.911 ns)	Zreg[5]	Overflow~reg0	Clock	Clock	Ĩ
9 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[14] Clock Clock 10 N/A 258.80 MHz (period = 3.864 ns) Zreg[8] Zreg[13] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[15] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[10] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Clock Clock Clock	8	N/A	258.80 MHz (period = 3.864 ns)	Zreg[8]	Zreg[15]	Clock	Clock	Ĩ
10 N/A 258.80 MHz (period = 3.864 ns.) Zreg[8] Zreg[13] Clock Clock 11 N/A 260.28 MHz (period = 3.842 ns.) AddSubR Zreg[15] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns.) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns.) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns.) Zreg[10] Zreg[15] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns.) Zreg[10] Zreg[14] Clock Clock	9	N/A	258.80 MHz (period = 3.864 ns)	Zreg[8]	Zreg[14]	Clock	Clock	Ĩ
11 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[15] Clock Clock 12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[15] Clock Clock 15 N/A 251.99 MHz (period = 3.817 ns) Zreg[10] Zreg[14] Clock Clock	10	N/A	258.80 MHz (period = 3.864 ns)	Zreg[8]	Zreg[13]	Clock	Clock	Ī
12 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[14] Clock Clock 13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[15] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[11] Clock Clock	11	N/A	260.28 MHz (period = 3.842 ns)	AddSubR	Zreg[15]	Clock	Clock	Ī
13 N/A 260.28 MHz (period = 3.842 ns) AddSubR Zreg[13] Clock Clock 14 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[15] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns) Zreg[10] Zreg[11] Clock Clock	12	N/A	260.28 MHz (period = 3.842 ns)	AddSubR	Zreg[14]	Clock	Clock	Ī
14 N/A 261.99 MHz (period = 3.817 ns.) Zreg[10] Zreg[15] Clock Clock 15 N/A 261.99 MHz (period = 3.817 ns.) Zreg[10] Zreg[14] Clock Clock	13	N/A	260.28 MHz (period = 3.842 ns)	AddSubR	Zreg[13]	Clock	Clock	Ī
15 N/A 261 99 MHz (period = 3 817 ps.) Zrea[10] Zrea[14] Clock Clock	14	N/A	261.99 MHz (period = 3.817 ns)	Zreg[10]	Zreg[15]	Clock	Clock	
	15	N/A	261 99 MHz (period = 3.817 ps)	7rea[10]	Zrea[1/1]	Clock	Clock	×

is produced (from a flip-flop) at an output pin is denoted as the *tco* parameter at that pin. In the worst case, the *tco* in our circuit is 7.319 ns.

riguit 21. Critical pauls.	Figure	21:	Critical	paths.
----------------------------	--------	-----	----------	--------

5. Click on tco in the Timing Analyzer section to view the table given in Figure 22. The first entry in the table shows that it takes 7.319 ns for a signal to propagate from bit 13 in register *Zreg* to the output pin z_{13} . The other two parameters given in Figure 20 are setup time, *tsu*, and hold time, *th*.

tco										
	Slack	Required tco	Actual tco	From	To	From Clock	^			
1	N/A	None	7.319 ns	Zreg[13]	Z[13]	Clock				
2	N/A	None	7.262 ns	Zreg[3]	Z[3]	Clock				
3	N/A	None	7.241 ns	Zreg[15]	Z[15]	Clock				
4	N/A	None	7.240 ns	Zreg[8]	Z[8]	Clock				
5	N/A	None	7.213 ns	Zreg[14]	Z[14]	Clock				
6	N/A	None	7.158 ns	Zreg[0]	Z[0]	Clock				
7	N/A	None	7.153 ns	Zreg[6]	Z[6]	Clock				
8	N/A	None	7.153 ns	Zreg[2]	Z[2]	Clock				
9	N/A	None	7.152 ns	Zreg[9]	Z[9]	Clock				
10	N/A	None	7.150 ns	Zreg[10]	Z[10]	Clock				
11	N/A	None	7.137 ns	Zreg[4]	Z[4]	Clock				
12	N/A	None	7.127 ns	Zreg[1]	Z[1]	Clock				
13	N/A	None	7.122 ns	Zreg[12]	Z[12]	Clock				
14	N/A	None	6.971 ns	Zreg[5]	Z[5]	Clock				
15	N/A	None	6.966 ns	Zreg[11]	Z[11]	Clock				
16	N/A	None	6.945 ns	0verflow~reg0	Overflow	Clock				
17	N/A	None	6 936 ns	Zrea(7)	2[7]	Clock	~			

Figure 22: The tco delays.

6. An indication of where the circuit is implemented on the chip is available by selecting Assignments >

Timing Closure Floorplan, or by clicking the icon \Im . Figure 23 depicts the result, highlighting in color the logic elements used to implement the circuit. To make the image appear as shown you may have to select View > Field View, so that the tool does not show the details of the chip resources. You also may need to select View > Assignments > Show Fitter Placements or click the corresponding icon in the toolbar (which is likely to be already selected by default). The floorplan view can be enlarged by maximizing the window and selecting View > Fit in Window (shortcut Ctrl-w), and it can be expanded to fill the screen by clicking the Full Screen icon \square .

Figure 23: View of the floorplan.

7. A Zoom Tool, activated by the icon ^(±), can be used to enlarge parts of the image even more. Figure 24 shows a zoomed-in view of the floorplan that highlights the implemented circuit. To see the details given in the figure you have to select the Floorplan Editor command View > Interior Cells. By positioning the cursor on any logic element the designer can see what part of the circuit is implemented in this resource. The floorplan tool has several icons that can be used to view aspects such as fanin and fanout of nodes, connecting paths between nodes, and so on. For more information on using this tool refer to the online help, by selecting Help > Contents > Viewing the Fit.

3]) 	Placed) Bre Placed H(3		(7_Y18_N4 Y18_N4
З			 (()	
ß					

Figure 24: A portion of the expanded view.

The detailed implementation of the circuit in the form of logic equations is also included in the compilation report. It can be viewed by selecting Fitter > Fitter Equations. These equations do not necessarily correspond directly to any logic expressions that may have been given in the VHDL design file, because the synthesized circuit is implemented on the FPGA chip in logic elements that constitute lookup (truth) tables (LUTs).

4.1 Errors

The Quartus II software displays messages produced during compilation in the Messages window. If the VHDL design file is correct, one of the messages will state that the compilation was successful and that there are no errors.

If the Compiler does not report zero errors, then there is at least one mistake in the VHDL code. In this case a message corresponding to each error found will be displayed in the Messages window. Double-clicking on an error message will highlight the offending statement in the VHDL code in the Text Editor window. Similarly, the Compiler may display some warning messages. Their details can be explored in the same way as in the case of error message. The user can obtain more information about a specific error or warning message by selecting the message and pressing the F1 function key.

1. To see the effect of an error, open the file addersubtractor.vhd. Line 57 has the statement

 $H \le Breg XOR AddSubR_n$;

Replace H with J in this statement, illustrating a typographical error that is easily made because H and J are adjacent on the keyboard. Compile the erroneous design file. The Quartus II software will display a pop-up box indicating that the compilation was not successful. Acknowledge it by clicking OK. The compilation report summary, given in Figure 25, now confirms the failed result.

Compilation Report - Flow S		
🗃 🔄 Compilation Report	Flow Summary	
Completion Report CompletionReport CompletionReport	Flow Status Quartus II Version Revision Name Top-level Entity Name Family Device Timing Models Met timing requirements	Flow Failed - Tue Sep 06 16:18:51 2005 5.1 Internal Build 148 09/01/2005 TO Full Version addersubtractor addersubtractor Stratix EP1S10F484C5 Final N/A
1		

Figure 25: Compilation report for the failed design.

2. Click on Analysis & Synthesis > Messages in this window to have all messages displayed as shown in Figure 26.

🕘 Compilation Report - Analysis & Synth							
🞒 🔁 Compilation Report	Analysis & Synthesis Messages						
- 🚑 🖹 Legal Notice							
🛛 🞒 📰 Flow Summary	🖭 🚯 Info: Running Quartus II Analysis & Synthesis						
🚽 🗃 🔣 Flow Settings	(1) Info: Command: quartus map -read settings files=onwrite settings files=off addersubtractor -c addersubtractor						
🚽 🗃 📰 Flow Elapsed Time	Info: Found 6 design units, including 3 entities, in source file addersubtractor.vhd						
🚽 🖨 Flow Log	Error (10482): VHDL error at addersubtractor.vhd(57): object "J" is used but not declared						
🗄 👍 🔄 Analysis & Synthesis	S Error (10523): Ignored construct Behavior at addersubtractor.vhd(20) due to previous errors						
🗃 📰 Summary	🗉 🐼 Error: Quartus II Analysis & Synthesis was unsuccessful. 2 errors, 0 warnings						
🗄 🎒 🧰 Settings							
- 🎒 🎹 Source Files Read							
- 🗃 🎹 INI Usage							
- 🚑 🌔 Messages	Message: 13 of 17 🚯 😜 Location 1: line 57, column 0, D:/quartus_tutorial/adde 👤 Locate						

Figure 26: Figure 26. Error messages.

3. Double-click on the first error message, which states that variable J is not declared. The Quartus II software responds by opening the *addersubtractor.vhd* file and highlighting the erroneous statement as shown in Figure 27. Correct the error and recompile the design.

æ	add	ersubtractor.vhd							
	54	GENERIC MAP (k => n)	~						
	55	PORT MAP (Areg, Z, SelR, G) ;							
	56	AddSubR_n <= (OTHERS => AddSubR) ;							
	57	J <= Breg XOR AddSubR_n ;							
	58	over_flow <= carryout XOR G(n-1) XOR H(n-1) XOR M(n-1) ;							
	59	Z <= Zreg ;							
J	60	END Behavior;	_						
	61								
	62	k-bit 2-to-1 multiplexer							
	63	LIBRARY ieee ;							
	64	USE ieee.std_logic_1164.all ;							
	65								
			>						

Figure 27: Identifying the location of the error.

5 Using the RTL Viewer

The Quartus II software includes a tool that can display a schematic diagram of the designed circuit. The display is at the Register Transfer Level of detail, and the tool is called the *RTL Viewer*.

1. Click Tools > RTL Viewer, to reach the window shown in Figure 28.

Figure 28: The addersubtractor circuit displayed by the RTL Viewer.

The displayed image depicts the structure of the entire *addersubtractor* circuit. The inputs to the circuit, shown on the left side, are registered. The two subcircuits, defined by the *mux2to1* and *adderk* entities, are drawn as shaded boxes. The remainder of the circuit are the XOR gates used to complement the *B* vector when subtraction is performed, and the circuitry needed to generate the *Overflow* signal.

2. Use the Zoom Tool to enlarge the image and view the upper-left portion of the circuit, as illustrated in Figure 29. Note that individual flip-flops are used for the *AddSub* and *Sel* signals. Sixteen-bit vectors *A* and *B* are denoted by heavy lines connected to the registers, *Areg* and *Breg*, which are indicated as heavily outlined flip-flop symbols. The *Zreg* register is drawn in the same manner.

Figure 29: An enlarged view of the circuit.

3. Details of subcircuits can be seen by clicking on the box that represents a subcircuit. Double-click on the *mux2to1* box to obtain the image in Figure 30. It shows the multiplexers used to choose either the *Areg* or *Z* vector as one of the inputs to the adder, under control of the *SelR* signal. Observe that the multiplexer data inputs are labeled as specified in the VHDL code for the *mux2to1* entity in part *b* of Figure 12, namely as *V* and *W* rather than *Areg* and *Z*.

Figure 30: The multiplexer subcircuit.

The RTL viewer is a useful tool. It can be used effectively to facilitate the development of VHDL code for a circuit that is being designed. It provides a pictorial feedback to the designer, which gives an indication of the structure of the circuit that the code will produce. Viewing the pictures makes it easy to spot missing elements, wrong connections, and other typical errors that one makes early in the design process.

6 Specifying Timing Constraints

The Quartus II software allows the user to specify timing constraints for the designed circuit.

1. Click Assignments > Timing Settings to reach the window in Figure 31. Here, it is possible to indicate the required values of various design parameters and the desired performance of the circuit. Consider the *fmax* indicator. So far, we have not specified the desired value of *fmax*. The compilation in Section 4 produced the *fmax* of 217.63 MHz. Suppose that we need a circuit that can operate at a clock frequency of 240 MHz. Specify this value as the default required *fmax* as shown in Figure 31, and click OK. Note that other parameters, such as t_{su} , t_{co} , and t_h can be specified in this window.

The Quartus II Compiler includes a Fitter executable that places the designed circuit into the available logic elements on the chip and generates the necessary wiring connections to realize the circuit. This is a complex process that can take a long time, particularly if the circuit is large and an ambitious value of *fmax* is specified. The time can be reduced if a lower value of *fmax* is acceptable. The user can indicate the level of the Fitter's effort.

Figure 31: Setting the timing constraints.

2. Click Assignments > Settings and then select the category Fitter Settings which opens the window in Figure 32. Three different levels of effort can be given. Choose the Auto Fit option, which instructs the Fitter to stop as soon as it finds an adequate implementation. The Fast Fit option reduces the compilation time, but it may produce a lower *fmax*. The third option, called Standard Fit, forces the Fitter to produce the best implementation it can find; at this effort level the Fitter will exceed the user's timing requirements as much as it can, which often results in longer compilation time. Click OK, and recompile the circuit.

Settings - addersubtractor	
Category:	
Category: General Files User Libraries (Current Project) Device Timing Requirements & Options EDA Tool Settings Compilation Process Settings Analysis & Synthesis Settings Assembler Timing Analyzer Design Assistant Signal Tap II Logic Analyzer Logic Analyzer Interface SignalProbe Settings Simulator Settings PowerPlay Power Analyzer Settings Software Build Settings HardCopy Settings	Fitter Settings Specify options for fitting. Timing-driven compilation

Figure 32: Fitter settings.

3. The new timing results are shown in Figure 33. The new *fmax* is 272.78 MHz, which meets the specified requirement. The critical paths in this implementation are given in Figure 34. Comparing these results with those in Figure 21, we see that now the most critical path begins at *SelR* and ends at the flip-flop *Overflow*. The first column in the figure shows the *slack* for each path, which is the amount of delay that could still be added to a given path without violating the specified timing constraint.

Ti	Fining Analyzer Summary								
	Туре	Slack	Required Time	Actual Time		From	To		
1	Worst-case tsu	N/A	None	3.250 r	18	B[12]	Breg[12]		
2	Worst-case too	N/A	None	7.710 r	15	Zreg[2]	Z[2]		
3	Worst-case th	N/A	None	-2.076	ns	A[8]	Areg[8]		
4	Clock Setup: 'Clock'	0.500 ns	240.04 MHz (period = 4.166 ns)	272.78	MHz (period = 3.666 ns)	SelR	0verflow~reg0		
5	Clock Hold: 'Clock'	1.049 ns	240.04 MHz (period = 4.166 ns)	N/A		Breg[3]	Zreg[3]		
6	Total number of failed paths								
<							>		

Figure 33: New timing results.

Cloc	Clock Setup: 'Clock'									
	Slack	Actual fmax (period)	From	То	From Clock	To Clock	^			
1	0.500 ns	272.78 MHz (period = 3.666 ns)	SelR	Overflow~reg0	Clock	Clock				
2	0.579 ns	278.78 MHz (period = 3.587 ns)	AddSubR	Overflow~reg0	Clock	Clock				
3	0.727 ns	290.78 MHz (period = 3.439 ns)	Zreg[9]	Overflow~reg0	Clock	Clock				
4	0.792 ns	296.38 MHz (period = 3.374 ns)	Zreg[12]	Overflow~reg0	Clock	Clock				
5	0.792 ns	296.38 MHz (period = 3.374 ns)	Zreg[5]	Overflow~reg0	Clock	Clock				
6	0.815 ns	298.42 MHz (period = 3.351 ns)	Zreg[6]	Overflow~reg0	Clock	Clock				
7	0.833 ns	300.03 MHz (period = 3.333 ns)	Zreg[2]	Overflow~reg0	Clock	Clock				
8	0.840 ns	300.66 MHz (period = 3.326 ns)	Zreg[8]	Overflow~reg0	Clock	Clock				
9	0.853 ns	301.84 MHz (period = 3.313 ns)	Zreg[4]	Overflow~reg0	Clock	Clock				
10	0.874 ns	303.77 MHz (period = 3.292 ns)	Zreg[3]	Overflow~reg0	Clock	Clock				
11	0.890 ns	305.25 MHz (period = 3.276 ns)	Zreg[11]	Overflow~reg0	Clock	Clock				
12	0.930 ns	309.02 MHz (period = 3.236 ns)	Zreg[0]	Overflow~reg0	Clock	Clock	~			
<						>				

Figure 34: New critical paths.

7 Quartus II Windows

The Quartus II display contains several utility windows, which can be positioned in various places on the screen, changed in size, or closed. In Figure 18, which is reproduced in Figure 35, there are four windows.

Figure 35: The main Quartus II display.

The Project Navigator window is shown near the top left of the figure. Under the heading Entity, it depicts a

tree-like structure of the designed circuit using the names of the entities in the VHDL code of Figure 12.

- 1. To see the usefulness of this window, open the previously compiled project *quartus_tutorial**addersubtractor* to get to the window that corresponds to Figure 35.
- 2. Double-click on the name *adderk* in the hierarchy. The Quartus II software will open the file *addersubtractor.vhd* and highlight the VHDL entity that specifies the adder subcircuit.
- 3. Right-click on the same name and choose Locate > Locate in Timing Closure Floorplan from the popup menu that appears. This causes the Quartus II software to display the floorplan, as in Figure 24, and highlight the part that implements the adder subcircuit.

The Status window is located below the Project Navigator window in Figure 35. As you have already observed, this window displays the compilation progress as a project is being compiled.

At the bottom of Figure 35 there is the Message window, which displays user messages produced during the compilation process.

The large area on the right side of the Quartus II display is used for various purposes. As we have seen, it is used by the Text Editor. It is also used to display various results of compilation and simulation.

A utility window can be moved by dragging its title bar, resized by dragging the window border, or closed by clicking on the X in the top-right corner. A particular utility window can be opened by using the View > Utility Windows command.

Copyright ©2005 Altera[®] Corporation. All rights reserved. Altera, The Programmable Solutions Company[®], the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

This document is being provided on an "as-is" basis and as an accommodation and therefore all warranties, representations or guarantees of any kind (whether express, implied or statutory) including, without limitation, warranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.